Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/debugger.php on line 101

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/file.php on line 90

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/cache/file.php on line 91

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/dispatcher.php on line 485

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/dispatcher.php on line 717

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/router.php on line 176

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/controller/controller.php on line 298

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/controller/controller.php on line 720

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/controller/component.php on line 221

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/controller/component.php on line 223

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/view/view.php on line 737

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/class_registry.php on line 70

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/class_registry.php on line 138

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/class_registry.php on line 146

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/security.php on line 56

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/validation.php on line 114

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/model/behavior.php on line 282

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/model/connection_manager.php on line 71

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/model/connection_manager.php on line 85

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/model/connection_manager.php on line 111

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/string.php on line 47

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/i18n.php on line 102

Deprecated: Assigning the return value of new by reference is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/i18n.php on line 103

Deprecated: Function split() is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/cake/libs/l10n.php on line 401
Werktuigbouw formules: Calculus formuleblad
Terug naar het overzicht

Calculus formuleblad

Standaardlimieten voor functies


Deprecated: Function ereg() is deprecated in /home/gf4222/domains/ginco.nl/public_html/wb/app/vendors/mathpublisher.php on line 1609

{lim}under{x right 0} ~~{sin (x)}/x = 1

{lim}under{x right 0^+}~ x^p = 0  (voor alle p > 0)

{lim}under{x right infty}~~ {x^p}/{a^x} = 0  (voor alle p in bbR, a > 1)

{lim}under{x right infty}~~ {ln(x)}/{x^p} = 0  (voor alle p > 0)

{lim}under{x right 0^+}~ x^p ln(x) = 0  (voor alle p > 0)

{lim}under{x right infty}~~ (1 + alpha / x)^x = e^a  (voor alle alpha in bbR)

Standaardlimieten voor rijen

{lim}under{n right infty} ~1/n^p = 0 (als p > 0)

{lim}under{n right infty} ~r^n = 0 (als delim{|}{r}{|} < 1)

{lim}under{n right infty} ~root{n}{n} = 1

{lim}under{n right infty} ~root{n}{alpha} = 1 (voor alle alpha > 0)

{lim}under{n right infty} ~(1 + alpha/n)^n = e^alpha (voor alle alpha in bbR)

Afgeleiden van standaardfuncties

(c)prime = 0

(x^n)prime = n x^{n-1} (n in bbN)

(x^{-n})prime = -n x^{-(n+1)} (n in bbN, x <> 0)

(x^alpha)prime = alpha x^{alpha-1} (alpha in bbR, x > 0)

(e^x)prime = e^x

(ln x)prime = 1/x (x > 0)

(sin x)prime = cos x

(cos x)prime = - sin x

(tan x)prime = 1/{cos^2 x} = 1 + tan^2 x

(arctan x)prime = 1/{1 + x^2}

Standaard Taylor ontwikkelingen

e^x = 1 + x + x^2/{2!} + x^3/{3!} + cdots + x^n/{n!} + R_n(x)

sin(x) = x - x^3/{3!} + x^5/{5!} - cdots + (-1)^n x^{2n+1)/{(2n+1)!}+ R_{2n+1}(x)

cos(x) = 1 - x^2/{2!} + x^4/{4!} - cdots + (-1)^n x^{2n)/{(2n)!}+ R_{2n}(x)

ln(1+x) = x - x^2/2 + x^3/3 - cdots + (-1)^{n-1} x^n/n+ R_n(x)

(1+x)^alpha = 1 + alpha x + (matrix{2}{1}{alpha 2}) x^2 + cdots + (matrix{2}{1}{alpha n}) x^n + R_n(x)
Hierin is alpha in bbR en (matrix{2}{1}{alpha k}) = {alpha(alpha - 1) cdots (alpha - k + 1)}/{k!}.

1/{1-x} = 1 + x + x^2 + x^3 + cdots + x^n + R_n(x)

arctan x = x - x^3/3 + x^5/5 - cdots + (-1)^n x^{2n+1)/{2n+1}+ R_{2n+1}(x)

Met restterm delim{|}{R_n(x)}{|} <= M/{(n+1)!} x^{n+1} waarbij delim{|}{f^(n+1) (t)}{|} <= M op het interval delim{[}{0,x}{]}.

Lijst van Primitieven

int{}{}{x^alpha dx} = 1/{alpha + 1} x^{alpha + 1} + c (alpha in bbR, alpha <> -1)

int{}{}{1/x dx} = ln delim{|}{x}{|} + c (x > 0 of x < 0)

int{}{}{e^x dx} = e^x + c

int{}{}{a^x dx} = 1/{ln(a)} a^x + c (a > 0, a <> 1)

int{}{}{ln(x) dx} = x ln(x) - x + c (x > 0)

int{}{}{1/{x^2 + 1} dx} = arctan(x) + c

int{}{}{1/{sqrt{1-x^2}} dx} = arcsin(x) + c (-1 < x < 1)

int{}{}{{-1}/{sqrt{1-x^2}} dx} = arccos(x) + c (-1 < x < 1)

int{}{}{1/{cos^2(x)} dx} = tan(x) + c (x <> pi/2 + k pi, k in bbZ)

int{}{}{sin(x) dx} = - cos(x) + c

int{}{}{cos(x) dx} = sin(x) + c